
Josh Dolitsky
Matt Farina

An Introduction to Helm





Introductions

Matt Farina - @mattfarina
Samsung SDS
Helm Maintainer

Josh Dolitsky - @jdolitsky
Blood Orange
Helm Maintainer



Where Helm Came From – Deis Workflow Is In The Past



What is Helm?
The package manager for Kubernetes



A package manager or package-
management system is a 
collection of software tools that 
automates the process of 
installing, upgrading, configuring, 
and removing computer programs 
for a computer's operating system 
in a consistent manner.

Source: Wikipedia

Helm helps you manage 
Kubernetes applications — Helm 
Charts help you define, install, and 
upgrade even the most complex 
Kubernetes application.
Charts are easy to create, version, 
share, and publish — so start 
using Helm and stop the copy-
and-paste.
Source: helm.sh

What Is A Package Manager?



Package Management: Tooling that enables 
someone who has knowledge of an application and a 
platform to package up an application so that 
someone else who has neither extensive knowledge 
of the application or the way it needs to be run on the 
platform can use it.



An apt example

$ sudo apt update
$ sudo apt install mariadb-server



An apt example

$ sudo apt-get install wget ca-certificates
$ wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc     

| sudo apt-key add –
$ sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ 
`lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list’

$ sudo apt-get update
$ sudo apt-get install postgresql postgresql-contrib



With Helm…

$ helm repo add bitnami https://charts.bitnami.com
$ helm install mymaria bitnami/mariadb



Is Helm trustworthy?
Many tools come, go, and make major changes in the cloud native space. 
Can you trust Helm to use in your toolchain?



“To conclude, in light of the findings stemming from this CNCF-
funded project, Cure53 can only state that the Helm project projects 
the impression of being highly mature. This verdict is driven by a 
number of different factors described above and essentially means 
that Helm can be recommended for public deployment, 
particularly when properly configured and secured in accordance to 
recommendations specified by the development team.”

From First Helm Security Audit Report (emphasis added) 



2016 2017 2018 2019 2020

01 Helm Started
Oct 2015

02 Helm v2 Begins
Jan 2016 – Now part 
of Kubernetes

03

04 Helm v2 Released
Nov 2016

Kubernetes + CNCF
March 2016 – Now part of 
Kubernetes

05 Growth!
Large usage growth

06

07 First Helm Summit
Feb 2018

08 Helm + CNCF
June 2018

Helm v3 Work Begins
Q4 2017

09

10

Helm v3

2nd Helm Summit
Sept 2019



1+ Million Downloads Per Month



Semantic Versioning

v2.3.4
Major Minor Patch



1 Year

1

2

Helm v3.0.0

Released

Helm v2 Bug and Security

fixes for 6 months
3

Helm v2 Security fixes 

for another 6 months

After 1 year Helm v2

support ends
4

Helm v2 Support



Release Candidates
Releases

Stable Release Candidate



Power Users



Maintainers

Companies Employing
Project Maintainers

15
Total Project
Maintainers

29



Signed Releases

-----BEGIN PGP SIGNATURE-----

iQIzBAABCgAdFiEEcR8o1RDh4Ly9X2v+lDboC/ukaQkFAl3C6XEACgkQlDboC/uk
aQmqLQ//W6TsRCdpzKyophKfdKX9YgG/cnd240w03LMT5M3zS4vdtN9RT4hDNW+L
n4FC4NoWUUdP7Uh4Erll+IjQlidKikwx9WCaV8WTfeRR7mHZWAdJ7oqW649MOY5a
3E7HeUG/9mjG6Otnd2EIkBn1+LYYNqmWqe4pcHVzl1guGkimn6X6qoljKr2M5lLm
E4rJ+PXz+mVAakQe55SX9Dr9rrJlt8+DfIFgxs9Lc/Rj0uOu3qoHTACCTPG2SprZ
K3vUJfJbkq0YY1JxybvEnrnG4ihvKCTgctu+Br07KvWRW4xRFpwHf0mdu7XEAQ/O
CFX+rpGA0D2uf+aSqR2hZcYd6N9+653+1oMtpMye9Ujn7VHzPuTgAkEiirPxxZ5q
69TdcMsvAvdB0gV9DNQrjLfwvArSwhuNfkEA1magDvwFcDEc4x1ejp6BB8RF40BC
n5aPNqKW2VW3MhIiSlnCSTXxyWztHQ2rxvXAyxaoEMLjz4iuo80GVhlXx34HaChc
NWFBiVHXPqfm+yCJqXbmmZAghUuPFCHeetwJEf1N5uKTr13INnorvjviWqPAC/Hk
kvsqMFtC/kEeGvFQvNEhzbjTrjjUao97VGiscf1N3gezWjL1A2sZ8M30bzDEAf0m
k4XKimgtCELKresFU5YN14KiCt6wQDmCBqbAvIUA6GhtEHytBMg=
=8M2+
-----END PGP SIGNATURE-----



Supported Operating Systems



Digging In To Helm



Helm Charts
Helm packages are referred to as charts – deployable units for Kubernetes-bound 
applications.

Charts are comprised of a collection of files (mostly YAML) at well-known locations.

Chart.yaml

values.yaml

templates/

service.yaml

deployment.yaml

metadata

default config

manifest templates



Creating a Chart
Helm provides a command to scaffold out a typical chart layout:

helm create myapp myapp/
├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml



# Source: Chart.yaml
apiVersion: v2
name: myapp
description: A Helm chart for Kubernetes
type: application
version: 0.1.0
appVersion: 1.16.0



# Source: Chart.yaml 
apiVersion: v2
name: myapp
description: A Helm chart for Kubernetes
type: application
version: 0.1.0
appVersion: 1.16.0

# List any chart dependencies
dependencies:
- name: mariadb

version: 7.0.1
repository: https://charts.bitnami.com



# Source: values.yaml 
replicaCount: 1

image:
repository: nginx
tag: 1.17.5-alpine

service:
type: ClusterIP
port: 80

secretRef: my-existing-secret



# Source: templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:

name: {{ include "myapp.fullname" . }}
labels:

{{- include "myapp.labels" . | nindent 4 }}
spec:

replicas: {{ .Values.replicaCount }}
selector:

matchLabels:
{{- include "myapp.selectorLabels" . | nindent 6 }}

template:
metadata:

labels:
{{- include "myapp.selectorLabels" . | nindent 8 }}

spec:
containers:

- name: {{ .Chart.Name }}
image: {{ .Values.image.repo }}:{{ .Values.image.tag }}



# Source: templates/_helpers.tpl

{{- define "myapp.selectorLabels" -}}
app.kubernetes.io/name: {{ include "myapp.name" . }}
app.kubernetes.io/instance: {{ .Release.Name }}
{{- end -}}



# Source: templates/test/test-connection.yaml
apiVersion: v1
kind: Pod
metadata:

name: "{{ include "myapp.fullname" . }}-test-connection"
labels:

{{ include "myapp.labels" . | nindent 4 }}
annotations:

"helm.sh/hook": test-success
spec:

containers:
- name: wget

image: busybox
command: ['wget']
args: ['{{ include "myapp.fullname" . }}:{{ .Values.service.port }}']
restartPolicy: Never



# Source: templates/NOTES.txt

Your installation was successful!
_____     ____

/      \ |  o |
|        |/ ___\|
|_________/
|_|_| |_|_|

To access your application, go to:
{{ .Values.ingress.host }}



Templates

Files under the templates/ directory are treated as dynamic YAML templates 
using the Go template language with some added functionality.

YAML templating prevents config duplication, and allows you to install the same 
chart in dev, staging, and production environments.



Values

Values files contain a collection of key-values that represent the configuration 
settings for a chart.

values.yaml is the default, baseline values file.

Override default configuration of the chart by using additional values files 
or individual key-value pairs.



Templates + Values = 🚀
The templates are rendered at install time against provided values, resulting in 
static, valid Kubernetes YAML.

# Source: templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:

name: {{ include "myapp.fullname" . }}
labels:

{{- include "myapp.labels" . | nindent 4 }}
spec:

replicas: {{ .Values.replicaCount }}
selector:

matchLabels:
{{- include "myapp.selectorLabels" . | nindent 6 }}

template:
metadata:

labels:
{{- include "myapp.selectorLabels" . | nindent 8 }}

spec:
containers:

- name: {{ .Chart.Name }}
image: {{ .Values.image.repo }}:{{ .Values.image.tag }}

# Source: values.yaml 
replicaCount: 1

image:
repository: nginx
tag: 1.17.5-alpine

service:
type: ClusterIP
port: 80

secretRef: my-existing-secret

# Source: myvals.yaml 
image:

tag: customtag

apiVersion: apps/v1
kind: Deployment
metadata:

name: myrelease-myapp
labels:

helm.sh/chart: myapp-0.1.0
app.kubernetes.io/name: myapp
app.kubernetes.io/instance: myrelease
app.kubernetes.io/version: "1.16.0"
app.kubernetes.io/managed-by: Helm

spec:
replicas: 1
selector:

matchLabels:
app.kubernetes.io/name: myapp
app.kubernetes.io/instance: myrelease

template:
metadata:

labels:
app.kubernetes.io/name: myapp
app.kubernetes.io/instance: myrelease

spec:
containers:

- name: myapp
image: nginx:customtag



In an environment where you are authenticated against a running 
Kubernetes cluster, use Helm to install a chart from a chart directory, 
or from a remote chart repository.

Installing a Chart

helm install myrelease myrepo/myapp

helm install myrelease ./myapp

1. From a chart directory:

2. From a remote chart repository:

Kubernetes
Cluster

myrepo
Chart Repository



Using Custom Values
Pass along any number of values files or individual key-value pairs in 
order to override chart defaults, overlayed from left to right

helm install myrelease ./myapp –f custom.yaml

1. Using a values file:

helm install myrelease ./myapp –-set image.tag=master

2. Using individual key-value pair:

helm install myrelease ./myapp \
-f staging.yaml \
-f us-east-1.yaml \
--set tracing.enabled=true

3. Advanced usage:



Check release status
Determine the status of an individual release, check if the installation 
of your chart was successful.

helm status myrelease

NAME: myrelease
LAST DEPLOYED: Mon Nov 11 18:07:06 2019
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:

echo "Visit http://127.0.0.1:8080 to use your application"
kubectl --namespace default port-forward $POD_NAME 8080:80



Helm has the ability to track all applications that have been installed in 
the cluster using Helm.

See what’s running

helm list

NAME     NAMESPACE REVISION UPDATED                             STATUS  CHART          APP VERSION
myrelease default  1       2019-11-11 18:07:06.805602 -0600 CST deployed myapp-0.1.0    1.16.0
wordpress default  1       2019-11-11 18:53:59.674758 -0600 CST deployed wordpress-7.6.7 5.2.4



Upgrading a release

Create a new revision of your release by updating either the template 
sources or configuration values.

helm upgrade myrelease ./myapp --set image.tag=1.16.1-alpine

Release "myrelease" has been upgraded. Happy Helming!
NAME: myrelease
LAST DEPLOYED: Mon Nov 11 19:14:13 2019
NAMESPACE: default
STATUS: deployed
REVISION: 2
NOTES:

echo "Visit http://127.0.0.1:8080 to use your application"
kubectl --namespace default port-forward $POD_NAME 8080:80



Rollback a release
Helm tracks every revision made on releases. When something goes 
wrong, revert back to a working version.

helm rollback myrelease 1

Rollback was a success! Happy Helming!



Remove a release
Remove all Kubernetes resources from the cluster that were created 
as part of a release.

helm delete myrelease

release "myrelease" uninstalled



More To Helm… 



















Beyond the Helm Project



Cloud Native Experiments



Notice: Check The Version
Helm v3 was just released. Many plugins, tools, Stack Overflow answers, 
and other details you find may still be focused on Helm v2.



Engage with Helm

• Kubernetes Slack
• #helm-users
• #helm-dev
• #charts

• Mailing List – https://lists.cncf.io/g/cncf-helm
• Twitter – https://twitter.com/helmpack
• YouTube – https://www.youtube.com/helmpack
• Developer Call – Thursday at 9:30am PT

https://lists.cncf.io/g/cncf-helm
https://twitter.com/helmpack
https://www.youtube.com/helmpack


Come to the booth!

This Photo by Unknown Author is licensed under CC BY-SA

https://zerokspot.com/weblog/2019/05/27/kubecon-cloudnativecon-europe-2019/
https://creativecommons.org/licenses/by-sa/3.0/


Helm 3 Deep Dive



Questions?


